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Combustion dynamics data were collected at the NASA Glenn Research Center’s CE-5 flame tube test 

facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-

LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data 

were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 

bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core 

(PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the 

dynamic data that collected at various combustor inlet conditions along with combustor geometric 

calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating 

pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 

kHz was only detected at the P’41 location (9.8 cm after fuel injector face) but not at the P’42 location (29 

cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio 

(T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density 

inside the combustor. The PVC frequency was not observed in these two configurations. 

 

I. Introduction 

The aircraft certification process requires every new commercial aircraft design to meet a standard developed by 

the International Civil Aviation Organization (ICAO). This standard defines the maximum levels of NOx emissions 

and particulate matter for each commercial aircraft, and it is expected to be more restricted overtime. As a result, 

engine companies are focusing their future aircraft combustor designs on lean front end technologies, such as the GE 

Twin Annular Premixing Swirler (TAPS) concept and the P&W Axially Controlled Stoichiometry (ACS) concept 

developed under NASA Environmental Responsibly Aviation (ERA) project [1]. NASA remains focused on Lean 

Direct Injection (LDI) as a candidate combustor concept for ultra-high pressure engine cycles, in which the 

combustor inlet temperature is high, the ignition delay time is short, and very little time exists to premix the fuel 

before combustion starts. In its extreme form, LDI injects fuel into the flame zone directly, mixing quickly as the 

fuel burns, reducing the probability and intensity of hot spots and keeping average flame temperature low.  

 Emission characteristics have been well studied for many LDI concepts [2 ,10], but not combustion dynamics. A 

few studies have reported combustion dynamic on LDI concepts. One study had reported a second generation 

Woodard LDI dynamic data [4]. The study found combustion pressure fluctuations are low (< 3.5 kPa peak to peak) 

for most conditions, except at one low power conditions, the peak-to-peak dynamic pressure fluctuation was greater 

than 10.0 kPa, and it is significantly depended on the fuel distribution ratio among the fuel-air mixers. Another study 

with a single mixer LDI injector found that instability increased with fuel air ratio, which might prevent full engine 

power operation [5]. 

Many sources could lead to combustion instability. Basic interactions and elementary processes are well 

described by Candel in a summary paper [6]. In brief, combustion dynamic is determined by combustor geometry, 

air flow dynamic, and heat release characteristic inside a combustor. For high amplitude instabilities to happen, 

pressure and heat release fluctuation need to be completely in phase to meet the Rayleigh criterions [7]. In this 

study, combustion dynamic data were collected at NASA Glenn Research Center’s CE-5 flame tube test facility 

under outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) injector configurations 

were tested separately, and the combustor geometry was well defined as a rectangular cuboid (7.62 cm X 7.62 cm X 

45.72 cm). Acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion effects on 

the dynamic noise spectrum are identified by correlating the dynamic data with combustor operational conditions, 
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such as inlet air temperature, inlet air pressure, pressure drop across the injector face, and calculated adiabatic flame 

temperatures. The results from the two 9-point SV-LDI injector configurations and the effects of dynamic sampling 

locations are also addressed.  

 

II. Experimental facilities and hardware 

Experimental data used in this study were collected on Stand 2 of the CE-5 flame-tube test facility at NASA 

Glenn Research Center [8]. Figure 1 shows a picture of the combustion rig. Non-vitiated air was pre-heated to a 

maximum temperature of 830 K and maximum pressure of 24.13 bar. Commercial JP-8 aviation fuel was used. Fuel 

flow rates were measured by turbine meters and coriolis flow meters, and the air flow rate was measured by a 

venturi meter. The fuel-air mixture was injected into a flame-tube with a cast ceramic liner. A gas probe was placed 

200 mm downstream of the injector to collect combustion products for analysis. The rest of the combustion products 

were cooled down to 500 K by mixing with sprayed water before exiting to an altitude exhaust system. The 

combusted gas samples were analyzed according to the standard gas-analysis procedure, SAE-ARP1256 [9]. 

 

 

 

 

 

 
Figure 1: test rig and dynamic instrumentation location.  

 

The SV-LDI module described here contains 9 identical fuel/air mixers in a 3x3 array as shown in Figure 2. The 

9 fuel/air mixers replace a single conventional fuel injector. Each fuel/air mixer consists of an air passage with a 

helical axial air swirler followed by a converging-diverging venturi section. A simplex fuel injector is inserted 

through the center of the air swirler; the fuel injector tip is at the venturi throat. Three fuel circuits are used in this 

test. One fuel circuit supplies fuel to the middle fuel air mixer, which acts as a pilot. The other two fuel circuits each 

feeds four surrounding fuel air mixers: one feeds the corners, and the other feeds directly to the fuel air mixers 

adjacent to the center fuel air mixer.  

Two swirl configurations were tested. Figure 2c and 2d show the differences between the two. The co-rotating 

pilot configuration had the pilot mixer swirler rotating at the same direction as the main mixers, while the counter-

rotating pilot configuration had the pilot mixer swirler rotating at the opposite direction. For this study, fuel air 

equivalence ratios are similar among the nine mixers. 

Combustion chamber geometry was well defined as a rectangular cuboid (7.6 cm X 7.6 cm X 46 cm). Dynamic 

pressures were sampled from three locations axially. As indicated in Figure 1, the P’3 was located upstream of the 

fuel injection, while the P’41 was located 9.8 cm and the P’42 was located 29 cm after the fuel injector face. Three 

tubes, 0.46 cm inside diameter, were inserted into the combustor at these three locations to collect combustion 

dynamic data. The sensors were placed 0.9 m away from the tube inlet, each with a 30m tail to damp out the 

dynamic signals. A slow nitrogen purge flow at the end of the tail provided positive flow to keep the sensors from 

the hot combustor gas. The dynamic sensors used were piezoelectric, PCB Piezotronics, model 112A22.  
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a) Injector hardware b) Cross-sectional flame image and 

drawing  

 

  
c) Co-rotating pilot configuration 

 

d) Counter-rotating pilot configuration 

 

Figure 2: 9-point injector configuration a) injector hardware, b) cross-sectional drawing, c) with counter-rotating 

pilot, and d) with co-rotating pilot. 

 

The dynamic pressure signals are transformed to frequency domain with using the Fast Fouier Transform (FFT) 

function in Matlab. Each dynamic pressure reading is recorded for 30 seconds at 20 or 30 kHz. For spectral 

processing, each recording is split into segments of 215 points. As a result, each FFT used about 1.1 to 1.5 seconds of 

dynamic data. After the transformation, the frequency spectrum was corrected for line loss in the sampling line 

following Samuelson [10]. To reduce noise, the average values of these FFTs are reported in this study. The y-axis 

of the FFT plot is normalized by the combustor inlet air pressure, which is proportional to the square of the velocity 

fluctuations inside the combustor.  

 

III. Results and Discussion 

Reacting Effects on Combustor Dynamics  

 
The dynamic pressure fluctuations under non-reacting conditions are significant up to 3.0 kHz as shown in 

Figure 3. Unsteady flow or turbulence induces hydrodynamic pressure fluctuations [11]. The co-swirling rectangular 

3x3 array layout introduces a powerful opposing-flow shear layer between every pair of injector elements. This 

feature provides rapid mixing in the combustor during high power operation when the latter may be operating under 

lean direct injection mode. While there is significant turbulent energy left through 3.0 kHz, the amplitude decays 

with increasing frequency.  
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Combustion raises the noise spectrum amplitude across selected bands non-uniformly. The magnitude of the 

pressure fluctuation is much higher for the reacting condition than the non-reacting one. As shown in Figure 3, 

dynamic noises are significant up to about 6.0 to 7.0 kHz under reacting conditions. Within the operational 

conditions that were tested in this study, large magnitude combustion instabilities were not been observed. 

 

 

 
 

Figure 3: non-reacting vs. reacting dynamic pressure spectrums (FFT) at an inlet temperature of 727 K and inlet 

pressure of 17.2 bar (with co-rotating pilot configuration at the P’41 location) 

 

Flow Field Effects  

 
Reversing the pilot injector swirl direction removes the shear layer between it and its four adjacent neighbors by 

setting up cooperative flow at those borders, which reinforces the pilot flow. Figure 2c and 2d show the drawings for 

the co-rotating pilot configuration and the counter-rotating pilot configuration. The red wavily lines represent non-

cooperative interactions between swirling air jets that generated by the fuel-air mixers. The dynamic spectrum is 

about the same for the counter-rotating and co-rotating pilot configurations for up to 3.0 kHz (Figure 4).  Two 

broadband noises are seen in the counter-rotating configuration spectrum at around 4.3 kHz and 5.5 kHz, which are 

not seen in the co-rotating pilot configuration. In addition, the amplitude for noise at around 1.8 kHz is significantly 

higher for the counter-rotating pilot configuration than for the co-rotating pilot configuration. 

 

Measurement Location Effects 

 

Dynamic pressures were taken at two locations axially inside the combustor. The P’41 location is 10 cm 

downstream of the fuel injector face, and the P’42 location is 20 cm further downstream. Figure 4a and 4d compare 

the dynamic data that taken at these two locations for both configurations. The most significant difference in 

dynamic pressure fluctuations between these two locations is the presence of the 0.9 kHz broadband noise at the 

P’41 location but not at the P’42 location.  

There are two possible explanations. First, the 0.9 kHz pressure fluctuation may have been damped before 

reaching the P’42 location due to viscous dissipation. Second, the 0.9 kHz noise band could be near the node at the 

P’42 sampling location. With calculation, this noise band is corresponded the third harmonic mode of a 
resonance frequency under choked conditions, for which its wavelength is about 0.62 m. A node is located at 
about 0.31 m, which is near the P’42 location (0.29 m). As a result, no or low amplitude of the 0.9 kHz noise band 

is seen at the P’42 location. 
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a) P’41 location 

 
b) P’42 location 

 
Figure 4: dynamic pressure spectrum (FFT) for counter-rotating pilot configuration and co-rotating pilot 

configuration at a) P41 and b) P42 location. (T3= 828 K, P3 = 24.1 bar, and Ø= 0.47) 

 
Non-uniform Thermal Expansion Effects 

 
Non-uniform fuel-air distribution can cause pressure perturbations through non-uniform localized thermal 

expansion that translates into non-uniform localized flow acceleration. Figure 5 contrasts the dynamic pressure 

spectrum for cases with varied thermal expansion ratios (T4/T3) that ended with the same adiabatic flame 

temperatures 1866K (Fig. 5a) and 1590K (Fig. 5b). The amplitude of the 0.9 kHz disturbance consistently varies 

with the thermal expansion ratio, regardless of variation in combustor inlet (Fig. 5) or outlet temperatures (Fig.6). 

The amplitude of the dynamic noise band at around 1.8 kHz did not show much variation as a function of the 

inlet air temperature, but it seems to depend on the inlet air pressure. Figure 7 shows the data taken at various 

equivalence ratio and at inlet air pressures of 10.3 bar (7a), 17.2 bar (7b), and 24.1 bar (7c). These spectrums show 

that the amplitude of the 1.8 kHz noise band increases as the inlet air pressure and equivalence ratio increase. The 

increase in equivalence ratio would lead to a larger thermal expansion. The inlet air pressure increases would yield 

an increase in air density but not the viscous damping force inside the combustor. As the results, the amplitude of 

this dynamic noise band increases as the inlet air pressure increases.  
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a) T4= 1866 K 

 

 
b) T4=1590 K 

 
Figure 5: dynamic pressure spectrum (FFT) of the dynamic signals obtained at P41 location at various T3 conditions 

and at a) T4 = 1866 K, and b) T4 = 1590 K (P3 = 10.3 bar, with counter-rotating pilot configuration at the P’41 

location). 
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a) T3 = 727 K 

 

 
b) T3 = 828 K 

 

Figure 6: dynamic pressure spectrum (FFT) of the dynamic signals obtained at P41 location at various T4 conditions 

and at a) T3 = 727 K, and b) T3 = 828 K (P3 = 10.3 bar, with counter-rotating pilot configuration at the P’41 location) 
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a) P3 = 10.3 bar 

 
 

b) P3 = 17.2 bar 

 

 
c) P3 = 24.1 bar 

 
Figure 7: dynamic pressure spectrum (FFT) of the dynamic signals obtained at P41 location at various fuel air 

equivalence ratio conditions and at a) P3 = 10.3 bar, b) P3 = 17.2 bar, c) P3 = 24.1 bar (T3 = 828 K, with counter-

rotating pilot configuration at the P’41 location) 
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Acoustic Cavity Resonance Effects 
 

Figure 8 compares dynamic pressure spectrum (FFT) of the combustor dynamic data obtained at calculated 

adiabatic flame temperature (T4) of 1810 K (P3 = 24.1 bar and T3=828 K) at two locations to the expected or 

calculated locations of the axial mode and transverse mode acoustic frequencies (not the amplitudes). Acoustic 

frequencies depend on combustor geometries and flame temperature, and it is a function of speed of sound and 

wavelength of the sound as shown as follow: 

 

Equation 1:                                                               𝑓 =
𝐶

𝜆
=

√Υ𝑅𝑇4
2𝐿

𝑛⁄
                 

 

where f is frequency, c is speed of sound inside the combustor, which is function of flame temperature (𝑐 = √Υ𝑅𝑇4), 

and wavelengths are dependent on the combustor geometries. The sixth order axial mode frequency and first order 

transverse mode looks to be over lapped under this experimental condition. The expected acoustic frequencies are 

located at around 0.9, 1.8, 2.7, 3.6, 4.5, 5.4 and 6.3 kHz.   

 

 
Figure 8: dynamic pressure spectrum (FFT) of the combustor dynamic data obtained at calculated adiabatic flame 

temperature (T4) of 1810 K (P3 = 24.1 bar and T3=828 K) at two locations and the expected or calculated locations 

of the axial mode and transverse mode acoustic frequencies (with counter-rotating pilot configuration). 

 
The flame temperature changes should cause the acoustic mode dynamic frequency to shifts accordingly, since 

the combustor geometry is fixed. Figure 9 shows the dynamic data obtained at the P’42 location at different 

equivalence ratios for the counter-rotating pilot configuration. Shifts are seen at around 4.2 kHz and 5.2 kHz as the 

fuel air ratios changes. These frequencies might be corresponded to fifth, sixth harmonic axial acoustic modes 

and/or the first order transverse mode. As shown in Figure 8, the calculated acoustic frequencies are higher than the 

experimental obtained values. This may be because by that the flame tube (combustor chamber) is not completely 

adiabatic; the actual flame temperature is lower than the calculated T4. These acoustic frequencies shift only 

occurred with the counter-rotating pilot configuration but not the co-rotating pilot. The flow field differences 

between the two might be sources of these acoustic mode noises.  
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Figure 9: dynamic pressure spectrum (FFT) of the dynamic signals obtained at P42 location at P3 = 24.1 bar and 

T3=828 K, at various T4 conditions (with counter-rotating pilot configuration with counter-rotating pilot 

configuration at the P’42 location). 

 

Precessing Vortex Core Effects 

 

Precessing vortex core is a possible source of dynamic noise source. Each mixer has a 60-degree swirler, a swirl 

number of 1.0 [2]. The swirling flow generates a center recirculation zone for ignition stabilization and provides 

highly turbulence air near the fuel nozzle tip for fuel air mixing. This strong precessing vortex core can lead to a 

corresponding dynamic noise. This PVC frequency is close to the basic rotation rate of the air jet stream and 

increases linearly with flow rate [13]. In this study, differential air pressure drop conditions are examined and the 

resulting dynamic pressure spectrums are compared to identify the presence of a PVC induced frequency. Air 

pressure drop is linearly related to the square of the air flow velocity.  As the result, the precessing vortex core 

(PVC) frequency is a function of the square root of the pressure drop over the fuel injector face. Figure 10 shows the 

dynamic pressure spectrum (FFT) at various pressure drop conditions (T3= 828 K, P3=11.3 bar). With pressure drop 

decrease from 3.2% to 2.6% and to 2.1%, the PVC frequencies should decrease by about 10% and 20% respectively. 

However, no shift by 10% or 20% is seen in this figure for any frequency. The amplitude for most pressure 

fluctuation is similar, except at around 1.8 kHz, which decreases as the pressure drop decreases.  

 

 
 
Figure 10: dynamic pressure spectrum (FFT) obtained at P41 location at T3= 828 K, P3=11.3 bar, at various pressure 

drop conditions (with counter-rotating pilot configuration at the P’41 location). 
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IV. Summary 

Dynamic pressure spectrums of two 9-point Swirl-Venturi Lean Direct Injection configurations are 

characterized in this study. Pressure fluctuation inside the combustor is air flow dynamic driven and enhanced by 

non-uniform heat release inside the combustor. The acoustic cavity resonance noises were seen in the counter-

rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 

kHz was only detected at the P’41 location (9.8 cm after fuel injector face) but not at the P’42 location (29 cm after 

the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise 

band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The 

PVC frequency was not observed in these two configurations. 
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